
44 The Delphi Magazine Issue 55

Happiness Is An Option
Multithreading and a solution
to the readers/writers problem

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

There’s one thing about writing
a monthly column: you get to

describe some bad things that
have happened to you, to give vent
to your frustration, as it were, and
your readers will forgive you your
off-topic introduction. Providing,
of course, that you also describe
some snazzy algorithm.

So, this column is being written
in Washington, DC. Wow, I can hear
you say, lucky Julian, jetsetter
extraordinaire, flying to interna-
tional hot spots at the drop of the
proverbial hat. The James Bond of
algorithm-meisters. Ah, I wish it
were that simple and glamorous.

I’m afraid the reality is rather
more mundane. I had a flight from
Denver to Paris, with connection in
Washington, DC. I was going to
Paris as a Christmas present from
my wife, Donna, to see my favourite
band, Pet Shop Boys, in concert. I’d
missed their one and only concert
in Denver, I was acting in a play at
the time, and so Donna had saved
up to send me to Paris to see them
there. United Airlines had different
ideas, as it happened. The first hop
of my journey was delayed (some-
thing about a hydraulic line) and I
arrived in Washington three min-
utes after the connecting flight to
Paris had left. Nothing for it but to
stay the night in Washington to
await the next flight to Paris.

Which was at 6pm the next day.
So, I was going to spend one day

of my three-day jaunt to la belle
France at the Hilton Hotel and at
Dulles airport. Thanks very much,
United. Well, us connecting flight
people were asked to pick up our
luggage for the overnight stay. But
they couldn’t find my suitcase.

Well, excuse me while I scream.
Anyway, here I am at Dulles (for
which the word dull was invented)
the next day. Five and a half hours
to go. My trusty HP palmtop has a
new set of batteries. No drugstore
in sight, so by the time I get to
Charles de Gaulle airport, the

words fragrant and Julian would
not appear in the same sentence
unless you were being sarcastic.

Enough about my travails, other-
wise Our Esteemed Editor will be
wondering if I’m deliberately pad-
ding the article! This month we
shall talk about multithreaded pro-
gramming and, in particular, the
readers/writers problem. The idea
came from a message in one of
TurboPower’s newsgroups where
the writer was complaining about a
speed problem when one of
SysTools’ containers was used
across multiple threads.

Some Terminology
First, we shall discuss a few con-
cepts and review some functional-
ity provided by Win32 systems for
multithreaded programs. Then, I’ll
talk about the readers/writers
problem and we’ll see an
interesting solution for it.

With Win32 operating systems,
executing applications (processes
in Windows-speak) can spawn off
separate routines which can exe-
cute at the same time as the main
program. These routines are called
threads, and the main execution
thread of the application is called
the primary thread.

On single processor machines,
the operating system will execute
each of the threads for a short time
in a round-robin fashion, according
to their priority. In other words,
one at a time, one after the other,
very quickly, but to the program-
mer it is as if these threads execute
concurrently. On multiprocessor
machines, it is very likely that an
application’s threads will execute
concurrently, one per processor.

This all sounds great, except
when you consider what happens
when threads have to share data. If
we’re not very careful, we get
what’s known as a race condition:
corruption of data by two or more
threads because they’re updating
it at the same time.

Consider the following scenario.
There is a longint value, a counter,
say, that is being read and incre-
mented by several threads. The
counter is being used to time
stamp some data that is being writ-
ten elsewhere. The algorithm is
supposed to work like this: the rou-
tine reads the current value of the
counter, increments it, uses the
new value as the timestamp, and
then updates the counter variable
for the next time. Simple enough,
so let’s see how it breaks (and how
badly) in a multithreaded app.

Thread A reads the current
value of the counter. Before it has a
chance to increment it and write
the new value back to the variable,
the thread is swapped out by the
operating system and thread B
starts running again. It also reads
the counter in preparation for
incrementing it. It does so, and
then writes the new value back. It
is then swapped out by the operat-
ing system and thread A starts up
again. It now increments the value
it read and writes the new value
back to main memory. Bzzzt! The
effect of all this is that threads A
and B get the same timestamp,
which certainly wasn’t supposed
to happen. This is the famous race
condition: both threads are racing
to complete their operation before
they’re swapped out.

Let me make a couple more
points, without trying to beat this
simple example to death. First, an
obvious one: if the machine is a
multiprocessor machine, the two
threads are likely to be executing
at the same time, and no swapping
would take place. They can actu-
ally access the same data (that is,

March 2000 The Delphi Magazine 45

the same memory location) at
exactly the same time. The second
one is subtler: there is no guaran-
tee by the Pentium or the operating
system that all of the four bytes
contained in the longint counter
will be updated at the same time.
The reader of the counter may
actually manage to read two bytes
of the old value and two bytes of
the new one, we cannot be sure.
With the example of the counter,
we may not even notice this effect,
but if the longint value were a
pointer instead, it could be fatal.

Of course, these things may not
be noticed in testing: the inviolable
Programmer’s Law says that they
only strike when the application is
with your customers!

How do we combat the race con-
dition? We use one (or more) of the
Win32 synchronisation objects
and the WaitForSingleObject or
WaitForMultiple objects routines.

Critical Sections
We’ll briefly discuss these objects
and how they’re used. However,
before we do, there is a ‘light-
weight’ synchronisation object
that doesn’t fit in with the rest of
the family that we should talk
about. This is the critical section,
and it is usually the very first syn-
chronisation object that program-
mers learn how to use.

The critical section object is so
called because it was designed to
mark a section of code (usually
code that accesses some data or
data structure) in a serialised fash-
ion; it is critical that no two threads
can execute the same code at the
same time. The critical section
object doesn’t come with a lot of
options: we can create one,
acquire exclusive access to it
(known as entering the critical sec-
tion), release this exclusive access

(leaving the critical section), and
destroy it.

For our simple example, we
would write a routine that per-
forms the read, increment and
write operations. We would then
insert the call to acquire the criti-
cal section object (created else-
where) at the beginning of the
routine (EnterCriticalSection)
and a call to release it at the end
(LeaveCriticalSection). Listing 1
shows this simple serialised
access routine. We assume, in this
routine, that the critical section
already exists; presumably it was
created at the start of the applica-
tion (by calling InitializeCrit-
icalSection) and will be destroyed
at the end (with DestroyCritical-
Section). In Delphi the critical
section is a complex record struc-
ture of type TRTLCriticalSection,
defined in the Windows unit.

If this routine is always used to
access and update the counter, we
can guarantee the race condition
will not happen. Let’s walk through
the same execution scenario as
before. Thread A runs the routine.
It acquires the critical section and
then reads the current value. At
this point the operating system
swaps threads and thread B starts
up again. It calls the same routine.
It first tries to acquire the critical
section. It cannot (thread A has
exclusive control of it) and so the
operating system blocks the
thread’s execution until the critical
section becomes free again.
Thread B is forced to be swapped
out and thread A starts up again. It
completes its access to the coun-
ter and updates it with the new
value. It then releases its exclusive
ownership of the critical section.
At some later point, the operating
system will start up thread B again
and it will get exclusive access to
the critical section and read, incre-
ment and update the counter in a
protected manner.

In Windows NT and Windows
2000 there is another API routine
we could use: TryEnterCritical-
Section. This returns immediately,
either successfully entering the
critical section and returning true,
or noticing that some other thread
has the critical section and return-

ing false. No blocking occurs. We
won’t discuss that here, since it’s
not available for Windows 9x.

Deadlocks
Sounds simple enough. What are
the problems? Well, there’s only
one in particular for such a simple
example. Suppose the critical sec-
tion object protected a piece of
code that had an infinite loop (I
would assume something not too
obvious, because we don’t deliber-
ately write such things, do we?).
The blocked thread or threads
would never become unblocked:
they would wait forever.

If we had several such protected
routines then there is another
problem, related to the first.
Assume there are two critical sec-
tions in the application, X and Y.
To perform a particular function,
both critical sections are required.
Thread A takes an execution path
that acquires X first and then Y,
whereas B acquires Y first and
then X. Let A acquire critical sec-
tion X, but before it can acquire
critical section Y, the operating
system does its magic and B starts
running. It acquires critical section
B and then goes on to acquire X. It
fails (since A has it) and so the
thread is blocked. Thread A starts
up again and the first thing that
happens is that it tries to acquire
Y. It can’t, B has it, therefore it is
blocked as well. The upshot is that
both threads are blocked waiting
for each other to release a critical
section. This is known as deadlock.

Deadlocks are often very diffi-
cult to diagnose and fix. In using
critical sections, their effect is
compounded because there is no
timeout available. If there were, we
could wait a certain time and then
if we failed to acquire some critical
section we could back out of our
current processing, releasing
other synchronisation objects in
the process, and try again.
Another method is to make sure
we always acquire the synchroni-
sation objects in the same order.

More Synchronisation
Having talked at length about criti-
cal sections, we should now dis-
cuss the other synchronisation

➤ Listing 1: Simple removal
of a race condition.

var
CounterCS : TRTLCriticalSection;
GlobalCounter : integer;

function GetCounterSafely : integer;
begin
EnterCriticalSection(CounterCS);
Inc(GlobalCounter);
Result := GlobalCounter;
LeaveCriticalSection(CounterCS);

end;

46 The Delphi Magazine Issue 55

objects provided by Win32. The
others are all characterised by
having, and being referenced by, a
handle, which can be used by the
WaitForSingleObject or WaitFor-
MultipleObjects API routines.
WaitForSingleObject takes a single
handle and then waits for that
handle to become signalled. A
handle, even something like a file
handle, a process handle, or a
thread handle, has two states:
unsignalled and signalled. It’s as if
the handle had a little flag that is
raised or lowered, raised meaning
signalled and lowered meaning
unsignalled. Depending on the
object behind the handle, the
handle becomes signalled in vari-
ous ways, which we’ll discuss for
each object in a moment. Wait-
ForSingleObject merely blocks the
thread calling it until the refer-
enced handle’s flag goes up.
WaitForMultipleObjects, as you
might have guessed, accepts sev-
eral handles and waits for one or all
of them to become signalled (you
select which it’s to be).

One important point to realise
about both WaitFor... routines is
that they accept a timeout value.
You can select to wait forever, or
you can decide to wait for a certain
short period of time only (you
would get an error value back it the
timeout period expired). Another
point is the WaitFor... routines
cannot work with critical sections:
a critical section has no handle.

The first synchronisation object
with a handle is the mutex. This
object is very similar to the critical
section, in that it can be acquired
and released, and only one thread
can acquire it at one time (mutex is
short for mutual exclusion, which
describes this functionality).
When the mutex is owned by a
thread it is unsignalled, when it is
not owned by any thread it is sig-
nalled (it’s as if the mutex is waving
its flag saying ‘I’m free!’). The
WaitForSingleObject API routine
sets the signalled flag, and the
ReleaseMutex routine clears it.

The differences to critical sec-
tions are two-fold. Firstly, a mutex
has a name and can be referenced
from several processes (that is,
applications), let alone from

several threads. For example, with
a mutex you can protect access to
some shared memory between two
or more programs. Secondly, using
a mutex for a particular job takes
longer than using a critical section.
If you don’t want the timeout facil-
ity, or you don’t want to use it
across different processes, or you
don’t want to wait for multiple
objects, you should use a critical
section: it’s more efficient and
faster. There’s a third difference
for advanced developers: the
mutex has a set of security attrib-
utes associated with it, the critical
section does not.

There are six API routines asso-
ciated with a mutex. CreateMutex
creates a new mutex (you can
choose to own the new mutex from
the start). OpenMutex returns a
handle to an already existing
mutex (although CreateMutex will
do that for you if the mutex already
exists). The two WaitFor routines
acquire a mutex (or ‘un-signal’ it).
ReleaseMutex releases the mutex,
or signals it. And CloseHandle
destroys the mutex.

The second Win32 synchronisa-
tion object in this category is the
semaphore. This object is some-
what hard to explain, since it can
be used in various bizarre ways. In
one way, it’s like a mutex that can
be owned by several threads at
once: you define the number when
you create the semaphore. Let’s
assume the semaphore has an
internal count of owners. If this
value is greater than zero, the
semaphore is signalled, if it is zero
the semaphore is unsignalled.
Every time one of the WaitFor rou-
tines succeeds this internal count
is decremented. Eventually, the
allowed number of threads own
the semaphore and the count
becomes zero. The semaphore
becomes unsignalled. All subse-
quent WaitFor calls will block until
one of the current owning threads
calls ReleaseSemaphore. This rou-
tine increments the internal count
of the semaphore, thereby signal-
ling it. The operating system will
release only one of the waiting
threads, which will then decre-
ment the internal count and
un-signal the semaphore. Again,

like the mutex, semaphores can be
shared across several processes.

Lots of books at this point
describe a mutex as a semaphore
that has a maximum of one owner.
This is misleading, in my view. The
first thing to realise about the
semaphore is that threads don’t
own one. A mutex is owned by a
thread, a semaphore isn’t. A sema-
phore is more of a counting object:
it’s a gateway through which
threads have to pass to get to the
other side. Only a certain number
of threads can get through and,
once the right number have
passed through, the semaphore
blocks all the others. It’s a bit like a
parking lot: only a certain number
of cars can get in, after which you
have to wait for someone else to
leave before you can park.

Win32 provides six API routines
to use a semaphore. CreateSema-
phore creates a new semaphore
and defines the maximum number
of threads that can own the sema-
phore at once. OpenSempahore
opens an existing semaphore
(although CreateSemaphore can do
that as well). The two WaitFor rou-
tines, if successful, will decrement
the internal count by one.
ReleaseSemaphore increments the
internal count by one, signalling
the semaphore in the process (this
allows only one thread to be
released and get in). Finally, Close-
Handle destroys the semaphore.

The next Win32 synchronisation
object is the event. This is where
the nomenclature gets confusing
for Delphi programmers: compo-
nents using the VCL also have
things called events, they’re prop-
erties that define a routine to be
executed. I therefore call the Win-
dows event objects Win32Events,
to separate them in my own mind
from Delphi’s events.

A Win32Event is an object that
allows a thread to learn that some-
thing has happened, in other
words, that an event has occurred.
The assumption is that one thread
is going to set something up and
then tell one or more other threads
that the event has occurred and
that they can wake up and do
something. The Win32Event
remains unsignalled until the first

48 The Delphi Magazine Issue 55

thread signals it. There are two
possibilities for what happens
then: either just one thread is
released, or all the threads are
released. In the first situation, the
Win32Event is known as an auto-
reset event: the Win32Event is sig-
nalled, one thread that has called a
WaitFor routine on the object is
released, and the Win32Event is
immediately unsignalled again (the
object is automatically reset to the
unsignalled state). In the other
scenario, the Win32Event is known
as a manual-reset event. The Win32-
Event is signalled, all threads wait-
ing on it are released, and then
(possibly) the Win32- Event is then
reset to an unsignalled state by
explicitly writing code to do it.

As an example, suppose there is
a thread setting up a buffer. There
are several threads that are going
to be reading the data in this buffer
(in other words, no writing). The
reader threads all call a WaitFor
routine on a Win32Event object.
The thread that is writing data to
the buffer finishes its write cycle
and then signals the Win32Event to
indicate that the buffer is ready to
be used and be read from. All the
waiting threads are released and
start reading. The writing thread
can then reset the Win32Event to
unsignalled and start preparing the
next buffer-full.

There are seven API routines
that deal with Win32Events.
CreateEvent creates a new Win32-
Event, and there are parameters
that define what kind of Win32-
Event is being created and whether
it is initially signalled. OpenEvent
opens an existing Win32Event
(although, again, the Create rou-
tine can do this). There are the
usual two WaitFor routines. After
that there are three routines that
alter the signal status of the
Win32Event: SetEvent, ResetEvent
and PulseEvent. SetEvent sets a
manual-reset Win32Event to sig-
nalled. ResetEvent sets one to
unsignalled. PulseEvent can work
with either manual-reset or auto-
reset events: in the first case, it
signals the Win32Event, releasing
all waiting threads, and then resets
the event to unsignalled. In the
second case, the Win32Event is

signalled, one thread is released,
and the event is unsignalled.

Readers/Writers Problem
After this brief recap of basic
multithreading and synchronisa-
tion objects, we’ll take a look at the
particular problem that prompted
this column, at least in a much sim-
plified form. Suppose we wish to
share a TList amongst several
threads. There will be two types of
access: reading the information in
the TList (for example, iterating
through the contents), and adding,
deleting, or modifying items in the
TList. These can be characterised
as reader threads and writer
threads, or more succinctly as
readers and writers. Note that I’m
not saying that a particular thread
is always going to be a reader or a
writer, but in general at some point
in time it will use the TList just for
reading, a reader, whereas at
another time it will update the
TList, a writer. If you think about it,
there can be many threads all read-
ing the TList at the same time
(they’re not going to be updating
the TList, after all), but only one
thread can be updating the TList at
any one time. If a writer thread
gains control, it must complete its
update before any reader threads,
or the next writer thread, can start
running. This is an example of a
readers/writers problem.

How do we design a synchronisa-
tion strategy for this scenario? The
simplest solution is to use a critical
section. Indeed, this is what Delphi
itself provides in the TThreadedList
class, available in Delphi 3 and
above. Essentially, the synchroni-
sation strategy is implemented like
this: every access to the TList is
protected with a critical section or
mutex. In Delphi’s version, the
TThreadedList provides a method
called LockList that enters a criti-
cal section and returns the internal
TList. The thread is then free to
use this TList object until it has fin-
ished, at which point the thread
routine is supposed to call Unlock-
List to leave the critical section.

Although this solution works,
and works very well, it has a blind-
ingly obvious drawback: only one
thread can access the TList at any

one time. There is no differentia-
tion between read access (which
doesn’t alter the list) and write
access (which does). As we saw,
there could be many readers of the
TList at any one time, the restric-
tion is that there should be only
one writer. This solution, although
simple to implement, is big over-
kill. It does not enable us to make
the most efficient use of the TList.

This, in essence, was the subject
of the message on TurboPower’s
newsgroup. The container in ques-
tion was protected in multi-
threaded mode by this type of
access strategy: only one thread
can access the container at any
one time, whether the thread just
wants to read the data or update it.

Can we use any other synchroni-
sation object? A mutex has the
same effect as the critical section,
so that can’t help. The semaphore
looks promising (we need several
readers to run at the same time),
but a moment’s reflection will con-
vince you that it’s too primitive for
what we want. The event also looks
interesting, but again it fails as
being too simple a synchronisa-
tion object. So, what can we do?

Well, we shall try and use two or
more primitive synchronisation
objects in some combination, in
order to give us what we require.
We shall design a compound
synchronisation object.

Readers/Writers Solution
Let’s define what we’d like the
compound object to do. We need a
single object that can be used by
reader and writer threads to syn-
chronise access to the TList. It
should allow several reader
threads to be active at once. It
should allow only one writer
thread to be active at any one time,
and, if one is, no reader threads
should be allowed either (they
might access something in the
TList that is in the middle of being
updated).

Ideally, we should set up the fol-
lowing behaviour as well. If a
thread wishes to write to the TList,
it should be able to tell the object
so. The object will then block any
new reader threads from running,
until all the current reader threads

March 2000 The Delphi Magazine 49

have finished and the writer thread
can continue. If there is no writer
thread waiting, a reader thread
should be allowed to access the
TList without hindrance. If we’re
clever, we should allow several
writer threads to become queued.
All this means that, in essence, the
object forces a cycle of many
reader threads using the TList,
followed by a single writer thread,
followed by many reader threads,
and so on.

A tall order? Maybe. Let’s start
slowly. It seems clear from the defi-
nition that there must be some syn-
chronisation object that a writer
thread can signal, once it has com-
pleted its update, to allow reader
threads to run. Conversely, there
must be a synchronisation object
that the final reader thread of a set
of reader threads can signal, once
complete, in order to release a
writer thread. The compound
object that we’re designing, then,
requires at least four methods. A
reader thread calls the first
method in order to start reading
(note that it may get blocked inside

this routine, waiting for a writer
thread to finish its work). Once a
reader thread has completed, it
needs to call another routine to
exit its use of the synchronisation
object and maybe release a writer
thread. Similarly, there must be
two such routines for a writer
thread. Let’s call these four rou-
tines StartReading, StopReading,
StartWriting, and StopWriting.

It’s fairly easy to describe how
this might now work, the imple-
mentation is somewhat harder.
StartReading has several jobs. It
must first check to see if a writer is
waiting. If there is at least one, it
must start waiting on a synchroni-
sation object of some sort, the
most likely candidates being a
semaphore or a Win32Event. If a
writer is running, StartReading
must do the same. If there is no
writer running or waiting,
StartReading registers the thread
as a reader, and the thread can
continue its work immediately.

In the StopReading method, the
reader must work out if it is the last
reader to be running. If it is, and a

writer is waiting, it must release
the writer by signalling the object
the writer is waiting on. If there is
no writer waiting, there can’t be
any readers waiting either (can
you see why?) and so the method
must leave the object in such a
state that either a reader or writer
thread could start immediately.

The StartWriting method does
several things, too. If a writer
thread is active, it waits on the syn-
chronisation object that will be
used to release the next writer. If
there are one or more reader
threads active, it does the same.
Otherwise, it registers itself as
writing and continues.

The StopWriting method de-
registers the thread running it as a
writer and then checks to see if one
or more readers are ready to go. If
so, it signals the synchronisation
object that the readers are waiting
on and finishes. If there are no
readers, it then checks for a writer
waiting. If so, it releases one writer,
by signalling the object they’re all
waiting on and then terminates. If
neither case applies, it leaves the

50 The Delphi Magazine Issue 55

compound object in a state such
that either a reader or a writer
could start immediately.

OK, then. From this functional
description we can extract various
bits of information. One, we need a
variable to hold the number of
readers waiting. Two, we need a
variable to hold the number of writ-
ers waiting. Three, we need a vari-
able to hold the number of readers
currently executing. Fourthly, we
need a Boolean flag to say that a
writer is executing. Finally, we
need some synchronisation
objects to wrap it all up. Notice
that it seems we could use the
number of executing readers as
zero to mean that a writer has con-
trol, but in reality zero could mean
that either a writer is active or no
thread is active at all. So, we’d
better stick to having the two
special variables.

Since there are four interrelated
variables, we need to wrap the
calls to read and update them
inside a critical section or a mutex.
A mutex is better, since we could
have a timeout on getting control.
That’s synchronisation object
number one. Each of the four meth-
ods would acquire the mutex as a
first step and release it as the final
one. However, recall that the meth-
ods which allow the reader to start
may block inside the routine. It
would be an automatic deadlock
should this block occur in between
the code to acquire or release the
controlling mutex, so we must
make sure it occurs outside, after
the mutex is released.

Since there can only be one
writer active at once, it seems to

make sense for the synchronisa-
tion object that serialises the
writer threads to be a mutex as
well, since a mutex can only be
owned by one thread. In reality it is
easier if we used a semaphore. The
reason is simple: we don’t actually
want to own the synchronisation
object, because there is no great
place to release it. Indeed, you will
see that we shall wait for a sema-
phore in one thread and release it
from another. This is not possible
with a mutex: the thread that
acquires the mutex owns it.

The synchronisation object for
the readers? Well either a sema-
phore or a manual-reset Win32-
Event would make sense. Probably
our best bet is to use a semaphore,
the event object would have prob-
lems (it relies on all the threads
waiting for the event object to be
signalled, whereas in fact a thread
could be in a state where it hadn’t
called the WaitFor routine yet).

Code Discussion
Listing 2 shows the interface for
the synchronisation class we’re
creating, the TaaReadWriteSync
class. It’s printed in this article just
to show you the various private

fields that we’ll be using in the four
main methods.

Listing 3 gives the code for the
StartReading method. We first
acquire the controlling mutex.
After this point we have control of
the values of the internal fields. If
there is at least one writer waiting
to have a go, or there is one cur-
rently executing, we increment the
number of waiting readers, release
the controlling mutex and then
wait for the ‘blocked readers’
semaphore to become signalled. If
there are no writers waiting or run-
ning, we increment the number of
executing readers, and release the
mutex. Once we exit this method,
we’ve either been released from
waiting for the semaphore, or we
went straight through. Notice that
in the second case we incremented
the number of running readers, but
in the first we did not. This looks
like a bug in the making, but hold
fire for a moment.

Listing 4, on the other hand,
shows the StopReadingmethod. We
first acquire the controlling mutex,
as usual. This thread wishes to
stop its reading activities and so it
decrements the executing readers
count. If the resulting value is
non-zero, there are other reader
threads still active, and so we just
release the controlling mutex and
exit the routine. If, however, it was
the last active reader, the count is
now zero, and we need to release a
waiting writer (if there is one). To
do this we release the blocked
writers semaphore; in other
words, we increment the count by
one, and the system will release
one and only one blocked writer
thread, immediately reducing the

type
TaaReadWriteSync = class
private
FBlockedReaders : THandle; {a semaphore}
FBlockedWriters : THandle; {a semaphore}
FController : THandle; {a mutex}
FActiveReaders : integer;
FActiveWriter : boolean;
FWaitingReaders : integer;
FWaitingWriters : integer;

protected
public
constructor Create;
destructor Destroy; override;
procedure StartReading;
procedure StartWriting;
procedure StopReading;
procedure StopWriting;

end;

procedure TaaReadWriteSync.StartReading;
var
HaveToWait : boolean;

begin
WaitForSingleObject(FController, INFINITE); {acquire the controlling mutex}
{if there is a writer executing or there is at least one writer
waiting, add ourselves as a waiting reader, make sure we wait}
if FActiveWriter or (FWaitingWriters <> 0) then begin
inc(FWaitingReaders);
HaveToWait := true;

end else begin
{otherwise add ourselves as another executing reader, make sure we don't wait}
inc(FActiveReaders);
HaveToWait := false;

end;
ReleaseMutex(FController); {release the controlling mutex}
if HaveToWait then
WaitForSingleObject(FBlockedReaders, INFINITE); {if we have to wait, do so}

end;

➤ Listing 2: The TaaReadWriteSync synchronisation class.

➤ Listing 3:
The StartReading method.

52 The Delphi Magazine Issue 55

count back to zero again, making
sure that all the other writer
threads remain blocked. Prior to
that, though, the StopReading
method decrements the number of
waiting writers, and increments
the number of running writers. The
controlling mutex is then released.
The overall effect of this is that a
writing thread is released and the
two counts for the writers are
adjusted.

The StartWriting method is
shown in Listing 5 and proceeds as
follows. First thing, again, is to
acquire the controlling mutex. If
there are any running readers or
writers, we increment the number
of waiting writers, release the con-
trolling mutex and then wait for the
‘blocked writers’ semaphore to be
released. If the are no other run-
ning threads then we can start
straight away. We increment the
number of executing writers,
release the controlling mutex, and
exit the routine. Either way, once
we exit the routine the number of
active writers is set to one, either
by the method itself, or by the
StopReadingmethod (clever, huh?).

Finally, Listing 6 shows the
StopWriting method. First off:
acquire the controlling mutex, of

course. Then, as we are stopping
writing, we decrement the number
of active writers. We now check the
number of waiting readers. If it is
greater than zero we need to
release them all. We enter a loop
that decrements the number of
waiting readers, increments the
number of active readers, and
releases the semaphore. This will
in turn release one reader from
waiting. Eventually at the end of
the loop, all reader threads will
have been released, and they are
all active. If, on the other hand,
there are no readers waiting, the
method checks for any writers
waiting. If there are, it releases one
in the manner already described in
StopReading. Finally, no matter

what, it releases the controlling
mutex.

The rest of this reader/writer
synchronisation object can be
found on this month’s disk, not
that it consists of much. The Create
constructor allocates the two
semaphores and the controlling
mutex, the Destroy destructor
closes their handles.

I hope you enjoyed this foray
into multithreading in Win32. The
readers/writers synchronisation
object we wrote is useful in many
situations and certainly should be
part of your multithreaded algo-
rithm arsenal. Next time we shall
look at some more standard com-
pound synchronisation objects
and also look at monitors, which
are yet another multithreaded pro-
gramming construct (and also a
bad pun, if ever I heard one). Later
on this year, I’ll be updating both
columns to reflect the situation
with Kylix and Linux. Stay tuned!

Julian Bucknall cut his teeth writ-
ing on Delphi topics with a
multithreading chapter in a now
defunct Delphi book. Just to let
you know, this column was com-
pleted on the flight to Paris; he ar-
rived there on the same day as the
concert, which was fabulous. He’s
still hard at work writing the algo-
rithms book, but responds to mail
at julianb@turbopower.com. The
code that accompanies this article
is freeware and can be used as-is
in your own applications.

© Julian M Bucknall, 2000

procedure TaaReadWriteSync.StopReading;
begin
WaitForSingleObject(FController, INFINITE); {acquire the controlling mutex}
dec(FActiveReaders); {we're finishing reading}
{if we are the last reader in this cycle and there is at least one writer
waiting, release it}
if (FActiveReaders = 0) and (FWaitingWriters <> 0) then begin
dec(FWaitingWriters);
FActiveWriter := true;
ReleaseSemaphore(FBlockedWriters, 1, nil);

end;
ReleaseMutex(FController); {release the controlling mutex}

end;

➤ Listing 4: The StopReading method.

procedure TaaReadWriteSync.StartWriting;
var HaveToWait : boolean;
begin
WaitForSingleObject(FController, INFINITE); {acquire the controlling mutex}
{if there are readers or another writer running, add ourselves as a
waiting writer, and make sure we wait}
if FActiveWriter or (FActiveReaders <> 0) then begin
inc(FWaitingWriters);
HaveToWait := true;

end else begin
{otherwise add ourselves as another executing writer, make sure we don't wait}
FActiveWriter := true;
HaveToWait := false;

end;
ReleaseMutex(FController); {release the controlling mutex}
if HaveToWait then
WaitForSingleObject(FBlockedWriters, INFINITE); {if we have to wait, do so}

end;

➤ Listing 5: The StartWriting method.

procedure TaaReadWriteSync.StopWriting;
var i : integer;
begin
WaitForSingleObject(FController, INFINITE); {acquire the controlling mutex}
FActiveWriter := false; {we're finishing writing}
{if there is at least one reader waiting, release them all}
if (FWaitingReaders <> 0) then begin
for i := pred(FWaitingReaders) downto 0 do begin
dec(FWaitingReaders);
inc(FActiveReaders);
ReleaseSemaphore(FBlockedReaders, 1, nil);

end;
end else if (FWaitingWriters <> 0) then begin
{otherwise, if there is at least one waiting writer, release one}
dec(FWaitingWriters);
FActiveWriter := true;
ReleaseSemaphore(FBlockedWriters, 1, nil);

end;
ReleaseMutex(FController); {release the controlling mutex}

end;

➤ Listing 6:
The StopWriting method.

	Some Terminology
	Critical Sections
	Deadlocks
	More Synchronisation
	Readers/Writers Problem
	Readers/Writers Solution
	Code Discussion

